top of page

What is Artificial Intelligence? Everything you need to know about AI

By Nick Heath


WHAT IS ARTIFICIAL INTELLIGENCE (AI)?


It depends on who you ask.


Back in the 1950s, the fathers of the field Minsky and McCarthy described artificial intelligence as any task performed by a program or a machine that, if a human carried out the same activity, we would say the human had to apply intelligence to accomplish the task.



That obviously is a fairly broad definition, which is why you will sometimes see arguments over whether something is truly AI or not.


AI systems will typically demonstrate at least some of the following behaviors associated with human intelligence: planning, learning, reasoning, problem solving, knowledge representation, perception, motion, manipulation, and, to a lesser extent, social intelligence and creativity.


WHAT ARE THE USES OF AI?


AI is ubiquitous today, used to recommend what you should buy next online, to understand what you say to virtual assistants such as Amazon's Alexa and Apple's Siri, to recognize who and what is in a photo, to spot spam, or detect credit card fraud.


WHAT ARE THE DIFFERENT TYPES OF AI?


At a very high-level artificial intelligence can be split into two broad types: narrow AI and general AI.


Narrow AI is what we see all around us in computers today: intelligent systems that have been taught or learned how to carry out specific tasks without being explicitly programmed how to do so.


This type of machine intelligence is evident in the speech and language recognition of the Siri virtual assistant on the Apple iPhone, in the vision-recognition systems on self-driving cars, and in the recommendation engines that suggest products you might like based on what you bought in the past. Unlike humans, these systems can only learn or be taught how to do specific tasks, which is why they are called narrow AI.


WHAT CAN NARROW AI DO?


There are a vast number of emerging applications for narrow AI: interpreting video feeds from drones carrying out visual inspections of infrastructure such as oil pipelines, organizing personal and business calendars, responding to simple customer-service queries, coordinating with other intelligent systems to carry out tasks like booking a hotel at a suitable time and location, helping radiologists to spot potential tumors in X-rays, flagging inappropriate content online, detecting wear and tear in elevators from data gathered by IoT devices, the list goes on and on.


WHAT CAN GENERAL AI DO?


Artificial general intelligence is very different and is the type of adaptable intellect found in humans, a flexible form of intelligence capable of learning how to carry out vastly different tasks, anything from haircutting to building spreadsheets, or reasoning about a wide variety of topics based on its accumulated experience. This is the sort of AI more commonly seen in movies, the likes of HAL in 2001 or Skynet in The Terminator, but which doesn't exist today, and AI experts are fiercely divided over how soon it will become a reality.


A survey conducted among four groups of experts in 2012/13 by AI researchers Vincent C Müller and philosopher Nick Bostrom reported a 50 percent chance that Artificial General Intelligence (AGI) would be developed between 2040 and 2050, rising to 90 percent by 2075. The group went even further, predicting that so-called ' superintelligence' -- which Bostrom defines as "any intellect that greatly exceeds the cognitive performance of humans in virtually all domains of interest" -- was expected some 30 years after the achievement of AGI.


That said, some AI experts believe such projections are wildly optimistic given our limited understanding of the human brain and believe that AGI is still centuries away.





WHAT IS MACHINE LEARNING?


There is a broad body of research in AI, much of which feeds into and complements each other.


Currently enjoying something of a resurgence, machine learning is where a computer system is fed large amounts of data, which it then uses to learn how to carry out a specific task, such as understanding speech or captioning a photograph.


WHAT ARE NEURAL NETWORKS?


Key to the process of machine learning is neural networks. These are brain-inspired networks of interconnected layers of algorithms, called neurons, that feed data into each other and can be trained to carry out specific tasks by modifying the importance attributed to input data as it passes between the layers. During the training of these neural networks, the weights attached to different inputs will continue to be varied until the output from the neural network is very close to what is desired, at which point the network will have 'learned' how to carry out a particular task.

A subset of machine learning is deep learning, where neural networks are expanded into sprawling networks with a huge number of layers that are trained using massive amounts of data. It is these deep neural networks that have fuelled the current leap forward in the ability of computers to carry out tasks like speech recognition and computer vision.


There are various types of neural networks, with different strengths and weaknesses. Recurrent neural networks are a type of neural net particularly well suited to language processing and speech recognition, while convolutional neural networks are more commonly used in image recognition. The design of neural networks is also evolving, with researchers recently refining a more effective form of deep neural network called long short-term memory or LSTM, allowing it to operate fast enough to be used in on-demand systems like Google Translate.


Another area of AI research is evolutionary computation, which borrows from Darwin's theory of natural selection, and sees genetic algorithms undergo random mutations and combinations between generations in an attempt to evolve the optimal solution to a given problem.


This approach has even been used to help design AI models, effectively using AI to help build AI. This use of evolutionary algorithms to optimize neural networks is called neuroevolution and could have an important role to play in helping design efficient AI as the use of intelligent systems becomes more prevalent, particularly as demand for data scientists often outstrips supply. The technique was recently showcased by Uber AI Labs, which released papers on using genetic algorithms to train deep neural networks for reinforcement learning problems.


Finally, there are expert systems, where computers are programmed with rules that allow them to take a series of decisions based on a large number of inputs, allowing that machine to mimic the behavior of a human expert in a specific domain. An example of these knowledge-based systems might be, for example, an autopilot system flying a plane.


WHAT IS FUELING THE RESURGENCE IN AI?


The biggest breakthroughs for AI research in recent years have been in the field of machine learning, in particular within the field of deep learning.


This has been driven in part by the easy availability of data, but even more so by an explosion in parallel computing power in recent years, during which time the use of GPU clusters to train machine-learning systems has become more prevalent.


Not only do these clusters offer vastly more powerful systems for training machine-learning models, but they are now widely available as cloud services over the internet. Over time the major tech firms, the likes of Google and Microsoft, have moved to use specialized chips tailored to both running, and more recently training, machine-learning models.


An example of one of these custom chips is Google's Tensor Processing Unit (TPU), the latest version of which accelerates the rate at which useful machine-learning models built using Google's TensorFlow software library can infer information from data, as well as the rate at which they can be trained.


These chips are not just used to train models for DeepMind and Google Brain, but also the models that underpin Google Translate and the image recognition in Google Photo, as well as services that allow the public to build machine learning models using Google's TensorFlow Research Cloud. The second generation of these chips was unveiled at Google's I/O conference in May last year, with an array of these new TPUs able to train a Google machine-learning model used for translation in half the time it would take an array of the top-end graphics processing units (GPUs).


WHAT ARE THE ELEMENTS OF MACHINE LEARNING?


As mentioned, machine learning is a subset of AI and is generally split into two main categories: supervised and unsupervised learning.




Supervised learning

A common technique for teaching AI systems is by training them using a very large number of labeled examples. These machine-learning systems are fed huge amounts of data, which have been annotated to highlight the features of interest. These might be photos labeled to indicate whether they contain a dog or written sentences that have footnotes to indicate whether the word 'bass' relates to music or a fish. Once trained, the system can then apply these labels can to new data, for example to a dog in a photo that's just been uploaded.


This process of teaching a machine by example is called supervised learning and the role of labeling these examples is commonly carried out by online workers, employed through platforms like Amazon Mechanical Turk.


Training these systems typically requires vast amounts of data, with some systems needing to scour millions of examples to learn how to carry out a task effectively -- although this is increasingly possible in an age of big data and widespread data mining. Training datasets are huge and growing in size -- Google's Open Images Dataset has about nine million images, while its labeled video repository YouTube-8M links to seven million labeled videos. ImageNet, one of the early databases of this kind, has more than 14 million categorized images. Compiled over two years, it was put together by nearly 50,000 people -- most of whom were recruited through Amazon Mechanical Turk -- who checked, sorted, and labeled almost one billion candidate pictures.


In the long run, having access to huge labeled datasets may also prove less important than access to large amounts of computing power.


In recent years, Generative Adversarial Networks ( GANs) have shown how machine-learning systems that are fed a small amount of labeled data can then generate huge amounts of fresh data to teach themselves.


This approach could lead to the rise of semi-supervised learning, where systems can learn how to carry out tasks using a far smaller amount of labeled data than is necessary for training systems using supervised learning today.


Unsupervised learning

In contrast, unsupervised learning uses a different approach, where algorithms try to identify patterns in data, looking for similarities that can be used to categorize that data.


An example might be clustering together fruits that weigh a similar amount or cars with a similar engine size.


The algorithm isn't set up in advance to pick out specific types of data, it simply looks for data that can be grouped by its similarities, for example, Google News grouping together stories on similar topics each day.


Reinforcement learning

A crude analogy for reinforcement learning is rewarding a pet with a treat when it performs a trick.


In reinforcement learning, the system attempts to maximize a reward based on its input data, basically going through a process of trial and error until it arrives at the best possible outcome.


An example of reinforcement learning is Google DeepMind's Deep Q-network, which has been used to best human performance in a variety of classic video games. The system is fed pixels from each game and determines various information, such as the distance between objects on the screen.


By also looking at the score achieved in each game the system builds a model of which action will maximize the score in different circumstances, for instance, in the case of the video game Breakout, where the paddle should be moved in order to intercept the ball.


WHICH ARE THE LEADING FIRMS IN AI?

With AI playing an increasingly major role in modern software and services, each of the major tech firms is battling to develop robust machine-learning technology for use in-house and to sell to the public via cloud services.


Each regularly makes headlines for breaking new ground in AI research, although it is probably Google with its DeepMind AI AlphaGo that has probably made the biggest impact on public awareness of AI.


WHICH AI SERVICES ARE AVAILABLE?


All of the major cloud platforms -- Amazon Web Services, Microsoft Azure, and Google Cloud Platform -- provide access to GPU arrays for training and running machine learning models, with Google also gearing up to let users use its Tensor Processing Units -- custom chips whose design is optimized for training and running machine-learning models.


All of the necessary associated infrastructure and services are available from the big three, the cloud-based data stores, capable of holding the vast amount of data needed to train machine-learning models, services to transform data to prepare it for analysis, visualization tools to display the results clearly, and software that simplifies the building of models.


These cloud platforms are even simplifying the creation of custom machine-learning models, with Google recently revealing a service that automates the creation of AI models, called Cloud AutoML. This drag-and-drop service builds custom image-recognition models and requires the user to have no machine-learning expertise.


Cloud-based, machine-learning services are constantly evolving, and at the start of 2018, Amazon revealed a host of new AWS offerings designed to streamline the process of training up machine-learning models.


For those firms that don't want to build their own machine learning models but instead want to consume AI-powered, on-demand services -- such as voice, vision, and language recognition -- Microsoft Azure stands out for the breadth of services on offer, closely followed by Google Cloud Platform and then AWS. Meanwhile, IBM, alongside its more general on-demand offerings, is also attempting to sell sector-specific AI services aimed at everything from healthcare to retail, grouping these offerings together under its IBM Watson umbrella -- and recently investing $2bn in buying The Weather Channel to unlock a trove of data to augment its AI services.


WHICH OF THE MAJOR TECH FIRMS IS WINNING THE AI RACE?


Internally, each of the tech giants -- and others such as Facebook -- use AI to help drive myriad public services: serving search results, offering recommendations, recognizing people and things in photos, on-demand translation, spotting spam -- the list is extensive.



But one of the most visible manifestations of this AI war has been the rise of virtual assistants, such as Apple's Siri, Amazon's Alexa, Google Assistant, and Microsoft Cortana.


Relying heavily on voice recognition and natural-language processing, as well as needing an immense corpus to draw upon to answer queries, a huge amount of tech goes into developing these assistants.


But while Apple's Siri may have come to prominence first, it is Google and Amazon whose assistants have since overtaken Apple in the AI space -- Google Assistant with its ability to answer a wide range of queries and Amazon's Alexa with the massive number of 'Skills' that third-party devs have created to add to its capabilities.


Despite being built into Windows 10, Cortana has had a particularly rough time of late, with the suggestion that major PC makers will build Alexa into laptops adding to speculation about whether Cortana's days are numbered, although Microsoft was quick to reject this.

WHICH COUNTRIES ARE LEADING THE WAY IN AI?


It'd be a big mistake to think the US tech giants have the field of AI sewn up. Chinese firms Alibaba, Baidu, and Lenovo are investing heavily in AI in fields ranging from e-commerce to autonomous driving. As a country, China is pursuing a three-step plan to turn AI into a core industry for the country, one that will be worth 150 billion yuan ($22bn) by 2020.


Baidu has invested in developing self-driving cars, powered by its deep learning algorithm, Baidu AutoBrain, and, following several years of tests, plans to roll out fully autonomous vehicles in 2018 and mass-produce them by 2021.


Baidu has also partnered with Nvidia to use AI to create a cloud-to-car autonomous car platform for auto manufacturers around the world.


The combination of weak privacy laws, huge investments, concerted data-gathering, and big data analytics by major firms like Baidu, Alibaba, and Tencent, means that some analysts believe China will have an advantage over the US when it comes to future AI research, with one analyst describing the chances of China taking the lead over the US as 500 to one in China's favor.


HOW CAN I GET STARTED WITH AI?


While you could try to build your own GPU array at home and start training a machine-learning model, probably the easiest way to experiment with AI-related services is via the cloud.


All of the major tech firms offer various AI services, from the infrastructure to build and train your own machine-learning models to web services that allow you to access AI-powered tools such as speech, language, vision, and sentiment recognition on demand.


WHAT ARE RECENT LANDMARKS IN THE DEVELOPMENT OF AI?


There are too many to put together a comprehensive list, but some recent highlights include: in 2009 Google showed it was possible for its self-driving Toyota Prius to complete more than 10 journeys of 100 miles each -- setting society on a path towards driverless vehicles.


In 2011, the computer system IBM Watson made headlines worldwide when it won the US quiz show Jeopardy!, beating two of the best players the show had ever produced. To win the show, Watson used natural language processing and analytics on vast repositories of data that it processed to answer human-posed questions, often in a fraction of a second.


In June 2012, it became apparent just how good machine-learning systems were getting at computer vision, with Google training a system to recognize an internet favorite, pictures of cats.


Since Watson's win, perhaps the most famous demonstration of the efficacy of machine-learning systems was the 2016 triumph of the Google DeepMind AlphaGo AI over a human grandmaster in Go, an ancient Chinese game whose complexity stumped computers for decades. Go has about 200 moves per turn, compared to about 20 in Chess. Over the course of a game of Go, there are so many possible moves that searching through each of them in advance to identify the best play is too costly from a computational point of view. Instead, AlphaGo was trained on how to play the game by taking moves played by human experts in 30 million Go games and feeding them into deep-learning neural networks.


Training these deep learning networks can take a very long time, requiring vast amounts of data to be ingested and iterated over as the system gradually refines its model in order to achieve the best outcome.


However, more recently Google refined the training process with AlphaGo Zero, a system that played "completely random" games against itself, and then learned from the results. At last year's prestigious Neural Information Processing Systems (NIPS) conference, Google DeepMind CEO Demis Hassabis revealed AlphaGo had also mastered the games of chess and shogi.


And AI continues to sprint past new milestones, last year a system trained by OpenAI defeated the world's top players in one-on-one matches of the online multiplayer game Dota 2.


That same year, OpenAI created AI agents that invented their own invented their own language to cooperate and achieve their goals more effectively, shortly followed by Facebook training agents to negotiate and even lie.


HOW WILL AI CHANGE THE WORLD?



Robots and driverless cars

The desire for robots to be able to act autonomously and understand and navigate the world around them means there is a natural overlap between robotics and AI. While AI is only one of the technologies used in robotics, the use of AI is helping robots move into new areas such as self-driving cars, and delivery robots, as well as helping robots to learn new skills. General Motors recently said it would build a driverless car without a steering wheel or pedals by 2019, while Ford committed to doing so by 2021, and Waymo, the self-driving group inside Google parent Alphabet, will soon offer a driverless taxi service in Phoenix.


Fake news

We are on the verge of having neural networks that can create photo-realistic images or replicate someone's voice in a pitch-perfect fashion. With that comes the potential for hugely disruptive social change, such as no longer being able to trust video or audio footage as genuine. Concerns are also starting to be raised about how such technologies will be used to misappropriate people's image, with tools already being created to convincingly splice famous actresses into adult films.


Speech and language recognition

Machine-learning systems have helped computers recognize what people are saying with an accuracy of almost 95 percent. Recently Microsoft's Artificial Intelligence and Research group reported it had developed a system able to transcribe spoken English as accurately as human transcribers.


With researchers pursuing a goal of 99 percent accuracy, expect speaking to computers to become the norm alongside more traditional forms of human-machine interaction.


Facial recognition and surveillance

In recent years, the accuracy of facial-recognition systems has leaped forward, to the point where Chinese tech giant Baidu says it can match faces with 99 percent accuracy, providing the face is clear enough on the video. While police forces in western countries have generally only trialed using facial-recognition systems at large events, in China the authorities are mounting a nationwide program to connect CCTV across the country to facial recognition and to use AI systems to track suspects and suspicious behavior, and are also trialing the use of facial-recognition glasses by police.


Although privacy regulations vary across the world, it's likely this more intrusive use of AI technology -- including AI that can recognize emotions -- will gradually become more widespread elsewhere.


Healthcare

AI could eventually have a dramatic impact on healthcare, helping radiologists to pick out tumors in x-rays, aiding researchers in spotting genetic sequences related to diseases and identifying molecules that could lead to more effective drugs.


There have been trials of AI-related technology in hospitals across the world. These include IBM's Watson clinical decision support tool, which is trained by oncologists at Memorial Sloan Kettering Cancer Center, and the use of Google DeepMind systems by the UK's National Health Service, which will help spot eye abnormalities and streamline the process of screening patients for head and neck cancers.


WILL AI KILL US ALL?


Again, it depends on who you ask. As AI-powered systems have grown more capable, so warnings of the downsides have become direr.


Tesla and SpaceX CEO Elon Musk has claimed that AI is a "fundamental risk to the existence of human civilization". As part of his push for stronger regulatory oversight and more responsible research into mitigating the downsides of AI he set up OpenAI, a non-profit artificial intelligence research company that aims to promote and develop friendly AI that will benefit society as a whole. Similarly, the esteemed physicist Stephen Hawking has warned that once a sufficiently advanced AI is created it will rapidly advance to the point at which it vastly outstrips human capabilities, a phenomenon known as the singularity, and could pose an existential threat to the human race.


Yet the notion that humanity is on the verge of an AI explosion that will dwarf our intellect seems ludicrous to some AI researchers.


Chris Bishop, Microsoft's director of research in Cambridge, England, stresses how different the narrow intelligence of AI today is from the general intelligence of humans, saying that when people worry about "Terminator and the rise of the machines and so on? Utter nonsense, yes. At best, such discussions are decades away."


WILL AN AI STEAL YOUR JOB?


The possibility of artificially intelligent systems replacing much of modern manual labor is perhaps a more credible near-future possibility.


While AI won't replace all jobs, what seems to be certain is that AI will change the nature of work, with the only question being how rapidly and how profoundly automation will alter the workplace.


There is barely a field of human endeavor that AI doesn't have the potential to impact. As AI expert Andrew Ng puts it: "many people are doing routine, repetitive jobs. Unfortunately, technology is especially good at automating routine, repetitive work", saying he sees a "significant risk of technological unemployment over the next few decades".


The evidence of which jobs will be supplanted is starting to emerge. Amazon has just launched Amazon Go, a cashier-free supermarket in Seattle where customers just take items from the shelves and walk out. What this means for the more than three million people in the US who works as cashiers remains to be seen. Amazon again is leading the way in using robots to improve efficiency inside its warehouses. These robots carry shelves of products to human pickers who select items to be sent out. Amazon has more than 100,000 bots in its fulfillment centers, with plans to add many more. But Amazon also stresses that as the number of bots has grown, so has the number of human workers in these warehouses. However, Amazon and small robotics firms are working to automate the remaining manual jobs in the warehouse, so it's not a given that manual and robotic labor will continue to grow hand-in-hand.


Fully autonomous self-driving vehicles aren't a reality yet, but by some predictions, the self-driving trucking industry alone is poised to take over 1.7 million jobs in the next decade, even without considering the impact on couriers and taxi drivers.


Yet some of the easiest jobs to automate won't even require robotics. At present there are millions of people working in administration, entering and copying data between systems, and chasing and booking appointments for companies. As software gets better at automatically updating systems and flagging the information that's important, so the need for administrators will fall.


As with every technological shift, new jobs will be created to replace those lost. However, what's uncertain is whether these new roles will be created rapidly enough to offer employment to those displaced and whether the newly unemployed will have the necessary skills or temperament to fill these emerging roles.


Not everyone is a pessimist. For some, AI is a technology that will augment, rather than replace, workers. Not only that but they argue there will be a commercial imperative to not replace people outright, as an AI-assisted worker -- think a human concierge with an AR headset that tells them exactly what a client wants before they ask for it -- will be more productive or effective than an AI working on its own.


Among AI experts there's a broad range of opinions about how quickly artificially intelligent systems will surpass human capabilities.


Oxford University's Future of Humanity Institute asked several hundred machine-learning experts to predict AI capabilities, over the coming decades.


Notable dates included AI writing essays that could pass for being written by a human by 2026, truck drivers being made redundant by 2027, AI surpassing human capabilities in retail by 2031, writing a best-seller by 2049, and doing a surgeon's work by 2053.

They estimated there was a relatively high chance that AI beats humans at all tasks within 45 years and automates all human jobs within 120 years.


The San Diego Consulting Group has a team of experienced developers who work closely with our clients to ensure that their projects are completed on time and on budget. Our team is comprised of only the most competent people who are committed to excellence, teamwork, and the success of our clients.

All of our projects are managed out of San Diego California so our clients have a single point of contact in the US time zone for all of their needs.


We don't use a CSM so your account manager stays involved with you and your project manager all the way through. After all, one of the reasons you chose to work with your development partner is because you liked like your salesperson so why be forced into working with a pseudo-sales success manager who doesn't know you and your goals?


Our skilled designers and developers have the utmost integrity, openness, and honesty and will get the job done for you.


Contact us today to learn more about how we can help you achieve your digital goals.


1 Comment


Carlos
Aug 30, 2023

Thanks for post

Like
bottom of page